Bmi-1 induces radioresistance by suppressing senescence in human U87 glioma cells
نویسندگان
چکیده
Radiotherapy is the main locoregional control modality for a number of types of malignant tumors, including glioblastoma. However, radiotherapy fails to prevent recurrence in numerous patients due to the intrinsic radioresistance of cancer cells. Cell senescence is significant in tumor suppressor mechanisms and is closely associated with the radioresistance of cancer cells. Bmi-1 has been proposed to be an oncogene that can induce anti-senescence in tumor cells. The present study investigated the response of U87 glioma cells to radiation exposure and the role of Bmi-1 in the response following radiotherapy. Cell apoptosis and cell cycle distribution were assessed using flow cytometry, and a SA-β-Gal stain was used to observe the senescence ratio of U87 cells following radiation. The expression of Bmi-1 in U87 cells exposed to different doses of radiation was evaluated by western blot analysis. X-ray radiation was found to inhibit U87 cell proliferation through the induction of senescence rather than apoptosis. Following exposure to radiation, the cell cycle distribution was dysregulated, with an increased number of cells in the G2/M phase, and the expression of Bmi-1 was upregulated, particularly when a dose of ≥6 Gy was administered. The results indicated that senescence is the main mechanism by which U87 cell growth is inhibited following radiation. In addition, Bmi-1 may be significant in increasing the radioresistance of glioma cells by enabling cell senescence.
منابع مشابه
Cycling hypoxia increases U87 glioma cell radioresistance via ROS induced higher and long-term HIF-1 signal transduction activity.
Glioblastoma multiforme (GBM) tumors are the most common type of brain tumors and resistance to radiotherapy. This study aimed to investigate the differential effect and mechanism of tumor microenvironments, cycling hypoxia and non-interrupted hypoxia, on tumor cell radiosensitivity in the human U87 glioblastoma tumor model. We exposed U87 cells and mice bearing U87 glioma to experimentally imp...
متن کاملSilencing erythropoietin receptor on glioma cells reinforces efficacy of temozolomide and X-rays through senescence and mitotic catastrophe
Hypoxia-inducible genes may contribute to therapy resistance in glioblastoma (GBM), the most aggressive and hypoxic brain tumours. It has been recently reported that erythropoietin (EPO) and its receptor (EPOR) are involved in glioma growth. We now investigated whether EPOR signalling may modulate the efficacy of the GBM current treatment based on chemotherapy (temozolomide, TMZ) and radiothera...
متن کاملEGFRvIII and DNA double-strand break repair: a molecular mechanism for radioresistance in glioblastoma.
Glioblastoma multiforme (GBM) is the most lethal of brain tumors and is highly resistant to ionizing radiation (IR) and chemotherapy. Here, we report on a molecular mechanism by which a key glioma-specific mutation, epidermal growth factor receptor variant III (EGFRvIII), confers radiation resistance. Using Ink4a/Arf-deficient primary mouse astrocytes, primary astrocytes immortalized by p53/Rb ...
متن کاملData analyses of honokiol-induced autophagy of human glioma cells in vitro and in vivo
This article contains raw and processed data related to a research, "Honokiol induces autophagic cell death in malignant glioma through reactive oxygen species-mediated regulation of the p53/PI3K/Akt/mTOR signaling pathway" (C.J. Lin, T.L. Chen, Y.Y. Tseng, G.J. Wu, M.H. Hsieh, Y.W. Lin, R.M. Chen, 2016) [1]. Data were obtained by immunoblotting analyses of light chain 3 (LC3)-II, beclin-1, Akt...
متن کاملCopper induces cellular senescence in human glioblastoma multiforme cells through downregulation of Bmi-1.
Most human tumor cells, including glioblastoma multiforme (GBM) cells, have aberrant control of cell aging and apoptosis. Subcytotoxic concentrations of oxidative or stress‑causing agents, such as hydrogen peroxide, may induce human cell senescence. Thus, induction of tumor cells into premature senescence may provide a useful in vitro model for developing novel therapeutic strategy to combat tu...
متن کامل